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Resonance formation of the electron velocity distribution function �EDF� in an inert gas dc discharge at low
pressures and small currents is analyzed on the basis of an accurate numerical solution of the Boltzmann
kinetic equation in spatially periodic sinusoidally modulated striation-like fields. Calculations are performed
for neon at pressures around 1 Torr. The dependences of the EDF, electron density and mean energy, and
excitation rate on the electric field spatial period length are investigated. In addition to resonances correspond-
ing to S and P striations predicted by linear analytical theory, the kinetic model indicates the presence of a
resonance that can be attributed to an R striation. This resonance is more pronounced at lower pressures when
R striations are observed experimentally. The influence of inelastic collisions on the EDF formation in the
resonance fields is analyzed.
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I. INTRODUCTION

The positive column of an inert gas dc glow discharge is
stratified over a wide range of discharge conditions, i.e., ex-
ists in a regime of propagation of ionization waves �stria-
tions� where all internal plasma parameters vary periodically
in space and time. By the end of the 1960s striations were
understood as waves of an ionization-diffusion nature as dis-
cussed in detail in reviews �1–3�. The plasma was described
by a system of hydrodynamic equations including continuity
equations for charged particles and metastable atoms, elec-
tron momentum, and energy balance equations. The origin
and propagation of striations was considered as a develop-
ment of instabilities. The qualitative picture of discharge
stratification is given from this point of view in �4�. The
hydrodynamic approach is applicable if the electron velocity
distribution function �EDF� is formed locally due to electron-
atom and electron-electron collisions in each striation phase
as a function of the electric field. Therefore the range of
applicability of this approach is limited to sufficiently high
pressures and�or� large discharge currents.

At low pressures �units of Torr� and small currents �tens
of mA� the electron distribution function is formed by the
whole potential profile of the striation rather than by the
local field. In this case, the electron motion should be treated
from the nonlocal kinetics point of view. Since the 1970s
investigations of the EDF in spatially periodic striationlike
electric fields on the basis of the Boltzmann kinetic equation
solution with the spatial gradients being taken into account
�5� have been published.

Tsendin �6� developed an approach to the mechanism of
an inert gas discharge stratification basing on nonlocal elec-

tron kinetics in spatially periodic electric fields. At low pres-
sures and small currents the electron energy balance is con-
trolled mainly by inelastic collisions with atoms. Electrons
are accelerated by the action of electric field, with their total
energy �=U+e� �U and e� are the kinetic and potential
energy of an electron with the charge e=−e0, � is the poten-
tial� being approximately constant. A small decrease of � is
caused by the small loss of electron energy in elastic colli-
sions with atoms. When the electron kinetic energy attains
the atom excitation threshold U1, electrons can undergo in-
elastic impacts. After a loss of energy equal to U1 they are
accelerated again, and the process is repeated. The EDF and
the spatially periodic field with a spatial period length LS
�striation length� are formed in a self-consistent way. The
mechanism described above determines the spatial and en-
ergy periods. The fall of the potential over a striation length
VL

�S� is determined by the energy period equal to the sum of
the energy loss in inelastic collisions U1 and the small energy
loss in elastic collisions �U: e0VL

�S�=U1+�U. The spatial
period length equals LS=VL

�S� /E0, here E0 is the period-
averaged axial electric field. It was shown in �6� that the
presence of elastic collisions results in an electron bunching
effect that consists of compressing the EDF to a narrow
maximum moving in a plane �total energy �, axial coordinate
z� along the resonance trajectory which is close to a straight
line parallel to the z axis �it corresponds to conservation of
the total energy�. Formation of the EDF structure in the spa-
tially periodic fields has an explicit resonance character. If
the field spatial period length L differs from the resonance
length LS �small detuning from resonance� destruction of the
EDF structure takes place. The linear analytical theory �6,7�
predicts kinetic resonances not only at the period length L
=LS but also at lengths L=LS, LS /2, LS /3, etc., that corre-
spond to higher harmonics. The EDF in the resonance fields*Electronic address: alexey�skoblo@yahoo.com
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�i.e., with the field’s spatial period length being equal to L
=LS ,LS /2 ,LS /3 , . . .� has the form of maxima moving in the
plane �energy, coordinate� along the resonance trajectories.
At L=LS /2 ,LS /3 , . . . the number of EDF peaks and reso-
nance trajectories equals 2,3,… correspondingly.

Spatial relaxation of the EDF in the uniform and striation-
like spatially periodic fields was analyzed in �8,9� on the
basis of the accurate numerical solution of the Boltzmann
kinetic equation taking elastic and conservative inelastic col-
lisions with atoms into account. The EDF relaxation in the
spatially periodic field leads to the bunching of the EDF.
Electron energy losses in elastic impacts as well as the pres-
ence of several excited atomic states were demonstrated in
�9� to lead to the EDF bunching. Similar results were ob-
tained in �10� based on an analytical solution of the Boltz-
mann equation. The EDFs formed in the resonance fields and
also in the fields with the deviations of the spatial period
towards smaller or larger values were discussed in �11,12�
together with the resonance behavior of the macroscopic
quantities �electron density and mean energy�.

There are three different types of the self-excited ioniza-
tion waves �S, P, and R striations� in an inert gas dc glow
discharge at low pressures and small currents that can be
observed in experiment �1,13�. These types of striations dif-
fer by the magnitudes of frequency �, wavelength �striation
length� L, and potential drop on the wavelength VL=E0L. In
an S striation the fall of the potential VL slightly exceeds an
atom excitation threshold. Particularly, for neon VL
��17–22� V under different discharge conditions. Therefore
in an S striation the potential drop VL corresponds to the
value e0VL

�S�=U1+�U �for neon U1=16.6 eV� and the stria-
tion length equals the resonance length LS=VL

�S� /E0. Hence
the kinetic resonance at L=LS corresponds to an S striation
�6,7,9,12,14�. For this reason the notations VL

�S� and LS were
used above. In a P striation the potential drop on the striation
length VL and the striation length L are approximately two
times smaller than those in an S striation. P striations corre-
spond to resonance at L=LP=LS /2 �7,9,12,14�. Comparison
of the experimentally measured EDFs in S and P striations
�12,14� with the calculated electron distribution functions
�9,12,15� shows a good agreement between the theory and
experiment. The self-excited striations corresponding to
higher harmonics �e.g., for L=LS /3� have not been observed
experimentally.

Experimental values of the potential drop VL and striation
length L in an R striation are intermediate between the cor-
responding values in S and P striations. Particularly for neon,
in an R striation VL��12–14� V. The linear theory �6,7�
based on an approximate analytical solution of the kinetic
equation in spatially periodic weakly modulated fields did
not predict a resonance that could be attributed to an R stria-
tion.

In the present paper, the resonance behavior of the EDF is
studied based on an accurate numerical solution of the Bolt-
zmann kinetic equation in sinusoidally modulated striation-
like fields with a large modulation degree for different spatial
period lengths in the range LS /3 to LS. It is shown that in
addition to resonances corresponding to S and P striations,
the resonance that can be connected with an R striation takes

place. The measurements of the frequency, wavelength, and
potential drop over the wavelength were performed at low
pressures and small currents for different values of the dis-
charge current to illustrate the existence ranges of various
types of striations.

II. MEASUREMENTS OF THE STRIATION PARAMETERS
IN NEON DISCHARGE AT LOW PRESSURES AND

SMALL CURRENTS

The measurements of the striation parameters were per-
formed in a dc discharge in neon at pressure p=1.5 Torr,
tube radius R0=1 cm, and current i� �25–30� mA. The dis-
charge current i was stabilized by the current source based
on a high voltage field-controlled transistor. Two photo-
diodes were used to visually analyze the oscillations of the
plasma radiation intensity, and measure the frequency � and
wavelength L. The signals produced by the photodiodes po-
sitioned near the discharge tube were analyzed by a two
channel oscilloscope. The electrostatic voltmeter was used to
measure the difference of the mean floating potentials of the
two probes and hence the mean axial electric field.

The experimental dependences of the striation parameters
such as the wavelength L�i�, frequency ��i�, and potential
drop on the wavelength VL�i�, on the discharge current i are
represented in Figs. 1�a�–1�c�. P, R, and S striations are ob-
served successively with an increase of the current. These
three types differ by the values of the potential drop VL, as
demonstrated in Fig. 1�b�. The jumps of the striation param-

FIG. 1. Experimental dependences of the wavelength L �a�, fall
of the potential over the wave length VL �b�, and frequency � �c� on
the discharge current for the self-excited striations in neon at pres-
sure p=1.5 Torr. The dependences for increasing �squares� and de-
creasing �triangles� current.
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eters occur with the transitions from one type to another.
Hysteresis takes place. The period-averaged axial electric
field E0 weakly depends �decreases� on current, hence the
dependences VL�i� and L�i� have the similar form. The po-
tential drop and wavelength in S striation are VL
��21–22� V and L��6–7� cm; in P striation they are ap-
proximately two times smaller: VL��9–10� V and L
��2.5–3� cm; in R striation these quantities have intermedi-
ate values: VL��12–13� V and L��3.5–4� cm.

III. SOLUTION OF THE BOLTZMANN KINETIC
EQUATION IN STRIATIONLIKE FIELDS

Resonance behavior of the EDF in the spatially periodic
sinusoidally modulated striationlike fields is analyzed on the
basis of accurate numerical solution of the one-dimensional
Boltzmann equation taking axial coordinate gradients into
account. The EDF is assumed to be weakly anisotropic:

f�v,
vz

v
,z� =

1

2�
�me

2
�3/2� f0�U,z� +

vz

v
f1�U,z�� , �1�

here U=mev2 /2 is the electron kinetic energy, me is the elec-
tron mass, f0 is the isotropic part of the EDF, and f1 is the
anisotropic part.

Using the total energy �=U+e��z� and the axial coordi-
nate z as independent variables, the kinetic equation for the
isotropic part of the EDF �with the elastic and conservative
inelastic electron-atom collisions being taken into account�
can be written in the form

�

�z
� U

3NQ��U�
�f0��,z�

�z
� +

�

��
�2me

M
U2NQel�U�f0��,z��

= �
k

UNQk
in�U�f0��,z� − �

k

�U + Uk�NQk
in�U + Uk�

�f0�� + Uk,z� . �2�

Here, N is the density of atoms, Qel is the transport cross
section of elastic collisions, Qk

in is the cross section of the kth
atomic state excitation, Uk is the excitation energy of the kth
state, Q�=Qel+�kQk

in is the total cross section, and M is the
atom mass. The kinetic energy U in Eq. �2� is a function of �
and z. The steady-state approximation is used �the time de-
pendence is neglected�. It is applicable since the time for
establishment of the function f0 is defined by the frequency
of the energy exchange between atoms and electrons and it is
much smaller than typical values of the temporal period of
striations.

The sinusoidally modulated electric field under consider-
ation has the form

E�z� = E0�1 + 	 sin
2�z

L
� . �3�

Equation �2� is of parabolic type. The boundary conditions
are

f0	��,z�	z=0 = f 0
init��� , �4a�


 �f0��,z�
�z



U=0

= 0, �4b�

f0	��,z�	U→
 = 0. �4c�

The solution technique for Eq. �2� with the boundary con-
ditions �4� is analogous to �8,16�. It consists of the injection
of an arbitrary function f 0

init��� into the field �3� and subse-
quently obtaining the spatially periodic established solution
�independent of the form of f 0

init���� at sufficiently large dis-
tance along z. The cross sections Qel and Qk

in used in the
calculations are given in �9�. The normalization factor for the
EDF is chosen so that the electron density averaged over a
period is equal to unity.

The macroscopic quantities, such as the electron density
n, electron mean energy �U�, and excitation rate W are the
following integrals of the EDF:

n�z� = 

0




U1/2f0„U + e��z�,z…dU , �5�

�U��z� = 

0




U3/2f0�U + e��z�,z�dU

��

0




U1/2f0�U + e��z�,z�dU�−1

, �6�

W�z� = N� 2

me



0




U�
k

Qk
in�U�f0�U + e��z�,z�dU . �7�

In the present paper, calculations were made for neon at
pressures p=0.5 and 1.5 Torr �the gas temperature was as-
sumed to be 273 K�. The modulation degree of the field was
	=0.9. At p=1.5 Torr the period averaged axial electric field
was E0=3.25 V/cm. This is the typical experimental value
of the mean axial electric field for a discharge in neon at
pressure p�1.5 Torr, current i��10–20� mA and tube ra-
dius R0�1 cm �see Sec. II�. At p=0.5 Torr the value E0
=3 V/cm was taken. It is also close to the experimental val-
ues of the period averaged axial field under these discharge
conditions. The kinetic equation was solved for various val-
ues of the field spatial period length L in the range LS /3 to
LS �LS�5.7 cm�. The step was 0.1 cm��0.02LS� and one or
two orders of magnitude smaller in the vicinity of the reso-
nances.

IV. RESONANCE BEHAVIOR OF THE MACROSCOPIC
QUANTITIES

In order to illustrate the resonance behavior of the mac-
roscopic quantities, the modulation degrees of the electron
density, electron mean energy, and excitation rate �mn, m�U�,
and mW, correspondingly� were calculated:

mn =
nmax − nmin

nmax + nmin
� 100 % , �8�

m�U� =
�U�max − �U�min

�U�max + �U�min
� 100 % , �9�
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mW =
Wmax − Wmin

Wmax + Wmin
� 100 % . �10�

The indices “max” and “min” correspond to the maximum
and minimum values of the parameters n�z�, �U��z�, and
W�z� over a spatial period. The modulation degrees mn�L�,
m�U��L�, and mW�L� are represented in Figs. 2�a�–2�c� as the
functions of the spatial period length L at gas pressures p
=0.5 and 1.5 Torr. As can be seen from Fig. 2, resonance
peaks appear in all the dependences. These peaks are ex-
pressed most explicitly in the excitation rate modulation de-
gree mW�L� �Fig. 2�c��.

At the lower pressure p=0.5 Torr the resonance peaks are
sharper and narrower than at p=1.5 Torr. This effect can be
explained qualitatively based on an approximate analysis �6�
of the kinetic equation employing an expansion in powers of
the small parameter:

� =
6me

M
� U1

eE0�
�2

� 3�LS

��
�2

, �11�

where � is the electron mean free path with respect to elastic
impacts, ��=� /�2me /M is the length of electron energy re-
laxation in elastic collisions. If pressure is decreased three
times the parameter � becomes almost one order of magni-
tude smaller. Then, as a result of the bunching effect, the
EDF is compressed into narrower maxima. This leads to
sharper dependences �shown in Fig. 2� in the vicinity of the
resonance. The resonances become narrower and more pro-
nounced.

All dependences shown in Fig. 2 have peaks correspond-
ing to the resonances at the values of the spatial period
length L=LS, LS /2, and LS /3, which were predicted by linear
theory �6,7�. We shall call these resonances S resonance at
L=LS, P resonance at L=LS /2=LP, and Q resonance at L
=LS /3=LQ. S resonance peak corresponds to S striations ob-
served in experiments and has the largest value. P resonance
corresponding to P striations is expressed not so explicitly.
Self-excited striations corresponding to the weakly expressed
Q resonance are not observed in experiments.

In addition to these peaks, a maximum at L= �2/3�LS is
seen in Fig. 2. This resonance is observed distinctly at pres-
sure 0.5 Torr. It was not predicted by linear theory �6,7�. The
fall of the potential VL and the spatial period length L corre-
sponding to this resonance are close to the experimental val-
ues of the potential fall VL and the wavelength L in R stria-
tion observed under similar discharge conditions.
Experimentally measured values �see Sec. II, Fig. 1� for R
striations at p=1.5 Torr are VL= �12–13� V and L
= �3.5–4.0� cm. According to calculations, the considered
peak �Fig. 2� corresponds to the values VL=12.2 V and L
=3.75 cm under this pressure. At p=0.5 Torr calculations
result in VL=11.34 V and L=3.78 cm. The resonance at L
= �2/3�LS=LR will be called an R resonance hereafter.

V. RESONANCE FORMATION OF THE ELECTRON
DISTRIBUTION FUNCTION IN THE STRIATIONLIKE

FIELDS

Electron distribution functions �EDFs� calculated in the
resonance fields with spatial period lengths L=LS, LS /2, and
LS /3 �S , P ,Q resonances� at p=0.5 Torr are given in Figs.
3�a�–3�c�. The distance along the axial coordinate z for all
three cases is equal to LS which corresponds to one spatial
period for L=LS �S striation�, two spatial periods for L=LP
=LS /2 �P striation�, and three spatial periods for L=LQ
=LS /3. The potential drop over this distance is about 17 V,
the same for all three cases. As it is seen from Fig. 3, the
resonance EDFs have a distinctive structure with maxima
which move along the resonance trajectories. The EDFs are
compressed to these maxima as a result of the bunching ef-
fect. In the case of L=LS �Fig. 3�a�� the EDF is compressed
to one maximum which corresponds to an electron acquiring
kinetic energy equal to the excitation threshold U1 over the
distance of one spatial period LS and successive energy loss
in inelastic collisions with atoms. Figure 3�b� shows that in
the case of L=LP the EDF has two maxima which move
along two resonance trajectories. Electrons must travel two
spatial periods �i.e., the distance LS=2LP� to attain the ki-
netic energy equal to U1. For L=LQ the picture of electron
motion is similar, but there are three maxima in the EDF and
three resonance trajectories. Detuning from the resonance
values of the spatial period length results in destruction of
the regular structure of the EDF �11,12�. Experimental inves-
tigations of the EDF in S and P striations �12,14� show a
good agreement with the EDFs calculated at L=LS and L
=LP. Striations corresponding to the Q resonance have not
been found experimentally.

FIG. 2. Calculated dependences of the modulation degrees of
the electron density mn �a�, electron mean energy m�U� �b�, and
excitation rate mW �c� on the reduced spatial period length L /LS at
p=0.5 Torr �closed circles� and p=1.5 Torr �open circles�.
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The EDF resonance formation at L=LR= �2/3�LS �R reso-
nance� is illustrated by Fig. 4. The three-dimensional graphs
of the EDF calculated at p=0.5 Torr for L=LR and L
= �1±0.02�LR �±2%-detuning� are represented in the figure in
variables �kinetic energy, coordinate�. As it is shown in Fig.
4�b�, the EDF at L=LR has the regular structure of distinct
maxima which move on the plane �energy, coordinate�.
Small detuning results in destruction of this structure of the
EDF �Figs. 4�a� and 4�c��.

If pressure is increased to 1.5 Torr, the EDF maxima be-
come broader and less evident. This can be seen by compar-
ing Figs. 5 and 4�b�. As a result, the R resonance presented in
Fig. 2 at p=1.5 Torr is much weaker than that at p
=0.5 Torr. Note that S and P striations are observed in ex-
periment in the pressure range p� �5–7� Torr, but R stria-
tions at lower pressures only p� �1.5–2� Torr �13�, the tube
radius R0=1 cm.

The EDF representation in variables �total energy, coordi-
nate� is very informative. In Figs. 6�a�–6�d� these functions

are shown at p=0.5 Torr for S, P, Q, and R resonances. The
distance along the coordinate z for all four cases is equal to
2LS which corresponds to the two spatial periods at L=LS,
four periods at L=LP=LS /2, six periods at L=LQ=LS /3, and
three periods at L=LR= �2/3�LS. The total energy range for
all four graphs is the doubled fall of the potential on the S

FIG. 3. The EDFs calculated at p=0.5 Torr, for the resonances:
�a� L=5.7 cm=LS, VL=17.1 V, S resonance �S striation�; �b� L
=2.834 cm=LP=LS /2, VL=8.502 V, P resonance �P striation�; and
�c� L=1.89 cm=LQ=LS /3, VL=5.67 V, Q resonance. The distance
along the coordinate equals LS in all three cases.

FIG. 4. The EDFs calculated at p=0.5 Torr, for �b� R resonance,
L=3.78 cm=LR= �2/3�LS �VL=11.34 V�, and in the vicinity of the
resonance: �a� L=3.70 cm�0.98LR, �c� L=3.86 cm�1.02LR.

FIG. 5. The EDF calculated at p=1.5 Torr, for R resonance: L
=3.75 cm=LR= �2/3�LS, VL=12.2 V.
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striation length 2E0LS=2VL
�S� which slightly exceeds two ex-

citation thresholds ��35 eV�.
There is a principal difference between the distribution

functions at L=LR �Fig. 6�d�� and L=LS ,LP ,LQ �Figs.
6�a�–6�c��. For an R resonance the maxima in the EDF
f0�� ,z� have different amplitudes. For S, P, and Q reso-
nances all maxima are of the same amplitude. This follows
from the fact that in the case of L=LR one spatial period
length LR contains two maxima of the function
f0	�U ,z�	U=const �see Fig. 4�b�� and in other cases one spatial
period length L=LS ,LP ,LQ contains one maximum of the
function f0	�U ,z�	U=const �see Fig. 3�.

The EDF maxima move in the plane �� ,z�, along the reso-
nance trajectories. For Q and R resonances there are three
resonance trajectories since in both cases the function
f0	�� ,z�	z=const has three maxima �Figs. 3�c�, 4�b�, 6�c�, and
6�d��. However, the picture of the resonance trajectories is
different in these two cases.

In Figs. 7�a�–7�d� the qualitative picture of the EDF
maxima displacements along the resonance trajectories is

represented in the plane �total energy, coordinate� for various
resonances. The curves �=e��z� and �=e��z�+U1 where the
electron kinetic energy is equal to 0 or U1, correspondingly,
are shown. The regions of strong field �regions of an abrupt
fall of e��z�� are marked in Fig. 7 by thick parts of the z axis.
The electric field profile E�z� chosen here for better visual-
ization is modulated sharper than the sinusoidal function.
It is seen from Figs. 7�a�–7�c� that there are one �A�,
two �A ,B�, or three �A ,B ,C�, resonance trajectories for
S, P, and Q resonances, respectively. The jumps
AA� , A�A� , BB� , B�B� , CC� , C�C� �indicating the elec-
tron energy loss in inelastic collisions� take place in the
strong field regions. One jump occurs in each strong field
region. The distances A�A� , B�B� , C�C� are equal to LS for
all three cases �Figs. 7�a�–7�c��.

Figure 7�d� shows that there are three resonance trajecto-
ries for an R resonance, as was already mentioned above.
Nevertheless, the structure of the trajectories is more com-
plicated than it was for a Q resonance. In each strong field
region two jumps �AA� and BB�, CC� and A�A�, B�B� and
C�C�� occur. It is connected with the presence of two EDF
maxima in one spatial period length LR, as was mentioned
above. The configuration of the curves �=e��z� and �
=e��z�+U1 in the case of the electric field with the spatial
period being equal to LR is such that the distances A�A� and
B�B� �indicating electron acceleration to the kinetic energy

FIG. 6. The EDFs in variables �total energy, coordinate� calcu-
lated at p=0.5 Torr, for S �a�, P �b�, Q �c�, and R �d� resonances.
The distance along the coordinate equals 2LS in all four cases. The
graphs correspond to Figs. 3 and 4�b�.

FIG. 7. The picture of the resonance trajectories for the cases:
�a� L=LS, S resonance; �b� L=LP=LS /2, P resonance; �c� L=LQ

=LS /3, Q resonance; �d� L=LR= �2/3�LS, R resonance. The distance
along the coordinate equals 2LS in all four cases.
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U1� are different. Therefore electrons can acquire energy U1
over a distance either slightly exceeding LR or almost equal
2LR, as shown by the arrows A�A� and B�B� in Fig. 7�d�. The
picture of the resonance trajectories in this case is repro-
duced completely after the distance 2LS=3LR.

Figures 7�a�–7�d� give the schemes of the resonance tra-
jectories. In Fig. 8�b� the contour graph of the EDF in vari-
ables �total energy, coordinate� calculated at p=0.5 Torr for
an R resonance is represented. The graph is correlated with
the electric field �Fig. 8�a��. The resonance trajectories �dis-
placements of the EDF maxima� are shown by arrows. One
can see that the picture is similar to that shown in Fig. 7�d�.
According to Fig. 8�b�, the maximum of smaller amplitude is
formed at the point �1� �z�0.1LR�, and that of larger ampli-
tude appears at the point �2� �z�0.4LR�. The smaller maxi-
mum moves along the line ��const from z�0.1LR to z
�1.4LR �Fig. 8�b�, arrow A�A��. Over this distance �slightly
exceeding LR� electrons attain kinetic energy equal to the
excitation threshold U1. Then the jump A�A� takes place �the
energy U1 is lost in inelastic collision�. The larger maximum
starts from the point �2� �z�0.4LR� and acquires the kinetic
energy equal to U1 at the point z�2.1LR �Fig. 8�b�, arrow
B�B��. Then the loss of energy in inelastic impact �B�B��
occurs. The smaller maximum gains kinetic energy equal to
the excitation threshold, over a length slightly exceeding LR,
and the larger maximum acquires the same energy on the
length about 2LR. Transitions from the smaller maximum to
the larger one and vice versa take place during the jumps.
Therefore, electrons, twice in the distance 3LR, acquire and
lose in inelastic collisions energy equal to the excitation
threshold. It results in formation of the EDF with spatial
period LR= �2/3�LS.

The difference in the maximum amplitudes is connected
with the fact that the smaller maximum starts from the point
�1� �z�0.1LR� where the field E�z� increases, and the larger
maximum starts from the point �2� �z�0.4LR� where E�z�
decreases. The magnitudes of E�z� at z�0.1LR–0.4LR are
larger than those at z�0.4LR–0.7LR. It results in stronger
acceleration of electrons moving from the point �1� along

A�A� compared with electron acceleration from the point �2�
along B�B�. As a result, the EDF maxima of different ampli-
tudes are formed.

Thus, similarly to S and P striations, it is possible to in-
terpret R striations as a resonance phenomenon in spatially
periodic electric fields with spatial period length L
= �2/3�LS. Such resonances are well-known in nonlinear dy-
namics �17�.

VI. NONLINEAR BEHAVIOR OF THE ELECTRONS
MOTION

Behavior of the electrons motion in the resonant electric
field was described in Sec. I. From this description it is clear
that there exists a characteristic inner spatial period LS de-
fined by gas type and by discharge conditions so that in the
electric field with spatial period LS the properties of electrons
�the form of the EDF� are periodically repeated. In the case
when the spatial period of the electric field �external period
L� is detuned from this inner period, the properties of elec-
trons may not be repeated. The task can be formulated as
follows: for a given internal period LS find all values of ex-
ternal period L which deliver periodicity of electron proper-
ties.

Let zn be a spatial position of electron with the kinetic
energy U and the total energy �n:

zn = −
�n − U

e0E0
+

	L

2�
cos

2�zn

L
. �12�

The next position of electron with the same kinetic energy
can be written as

zn+1 = −
�n+1 − U

e0E0
+

	L

2�
cos

2�zn+1

L
. �13�

Using the fact that �n+1=�n−e0VL
�S�, Eq. �13� can be rewritten

as

zn+1 = −
�n − U

e0E0
+

VL
�S�

E0
+

	L

2�
cos

2�zn+1

L

= zn + LS +
	L

2�
�cos

2�zn+1

L
− cos

2�zn

L
� . �14�

Dividing the last equation over spatial period L of the
electric field we obtain


n+1 = 
n + � +
	

2�
�cos�2�
n+1� − cos�2�
n�� , �15�

where 
n=zn /L mod 1 is the phase position within a single
period of L, �=LS /L is the ratio of inner and outer periods.
In order to produce a map let us introduce the function A�
�:

A�
n� = 
n+1 − 
n = � +
	

2�
�cos�2�
n+1� − cos�2�
n�� .

�16�

After some manipulation we get

FIG. 8. Contour graph of the EDF calculated at p=0.5 Torr, for
R resonance: L=LR= �2/3�LS=3.78 cm, VL=11.34 V in the plane
�total energy, coordinate� �b�. The graph is correlated with the elec-
tric field �a�. Resonance trajectories are shown with arrows.
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A�
n� = � −
	

2�
cos�2�
n��1 − cos�2�A�
n��

+ tan�2�
n�sin�2�A�
n��� . �17�

The expression �17� represents an implicit equation for
A�
n�. A�
n� is a periodic bounded function of 
n as can be
seen from Fig. 7. The function A is a distance in “horizontal”
direction between curves e��z� and e��z�+U1. The map can
be written as follows:


n+1 = 
n + A�
n� . �18�

This expression describes a nonlinear map, similar to the
circle map in �17�. This map indicates the reason for nonlin-
earity: the motion of electrons in normal space is mapped
nonlinearly onto energy space. The map �18� can be investi-
gated for periodic solutions. For some starting value 
0 a
series of 
n can be calculated. In the case of periodicity a set
of possible 
n values should be limited by a small integer
amount of values: 1, 2, 3, or 4 which correspond to the
periodicity or period-2, period-3, or period-4 quasiperiodic-
ity, respectively. Once calculated a series 
n for given � can
be used for building a histogram of 
n values. The number
of maxima in the histogram can help judge the periodicity.

Figure 9 shows a contour plot for a set of histograms of

n series for different values of �. One can see in this figure
the values of 
 where more than 25% of points 
n series are
concentrated. The sum over 
 for a given value of � gives
100% of points 
n. One can clearly see that for some values
of � we obtain cycling values of 
: for �=1,2 ,3 it is only

=0, for �=1.5,2.5 it is 
=0 and 0.5, for �=1.25,1.75 it
is 
=0.1,0.47,0.85,0.93, and so on. These values of � cor-
respond to the L /LS ratios shown on the top of Fig. 9. The
ratios are given by a so-called Farey tree—a characteristic of
a circle map �17�. The investigated map gives resonances at
fractions of LS: 1 /3 �Q resonance�, 1 /2 �P resonance�, 2 /3
�R resonance�, and 1 �S resonance�. The latter three fractions
correspond to waves which can be observed experimentally.
In the case of periodicity of map �18� synchronization of the
microscopic kinetic motion of electrons with the macroscopi-
cally defined electric field takes place.

S, P, and R striations can exist in self-excited mode. After
applying an external periodic disturbance to the positive col-
umn other periodic states can also be revealed �18� which
correspond to the resonances 1/3 and 2/5 of the Farey tree.

These waves do not exist in self-excited mode as they are
effectively damped.

When the gas pressure is increased the resonances disap-
pear due to the increasing role of elastic collisions. The elec-
tron energy balance is then no longer controlled by inelastic
impacts.

VII. INFLUENCE OF INELASTIC COLLISIONS ON THE
RESONANCE BEHAVIOR OF THE EDF

It is interesting to analyze the dependence of the EDF
resonance formation on the magnitude of the inelastic
electron-atom collision frequency. There are two factors
leading to compression of the EDF to the resonance maxima
�the bunching effect�: the small fraction of electron energy
losses in elastic collisions and the presence of several excited
states of atomic neon �6,9,10�. Since low pressures
��0.5 Torr� are under consideration, the second factor plays
a significant role.

Analytical theory of the EDF formation in the spatially
periodic fields usually employs the “black wall” approxima-
tion corresponding to infinitely large flux of electrons into
the inelastic region at U�U1. This limiting case can be mod-
eled numerically by increasing formally the values of all in-
elastic collision cross sections Qk

in. It results in stronger de-
crease of the EDF in the region U�U1. In the present paper
the EDF and macroscopic quantities were calculated in the
vicinity of the resonance not only for realistic values of Qk

in

but also for ten times increased values of Qk
in.

The calculation results for the modulation degrees of the
electron density, electron mean energy, and excitation rate at
p=0.5 Torr are presented in Figs. 10�a�–10�c� for realistic
and ten times increased cross sections. According to Fig. 10
if the cross-section magnitudes Qk

in are increased, the reso-
nances become sharper and the resonance peaks significantly
larger.

The regular structure of the EDF becomes more pro-
nounced, with the EDF maxima being narrower. As an ex-
ample of the influence of the inelastic impact intensity on the
resonance EDF formation, the three-dimensional graphs of
the EDF for an R resonance at p=0.5 Torr are shown in Figs.
11�a�–11�c� for the ten times increased, actual, and ten times
decreased cross sections Qk

in. In Fig. 11�a� the EDF maxima
are significantly narrower than those in Fig. 11�b�. In Fig.
11�c� the EDF structure is completely destroyed. The spa-
tially periodic solution of the kinetic equation with increased
Qk

in can be attained over a few times longer distance than it is
established in the case of the actual cross-section values.

VIII. CONCLUSION

In the present paper, resonance formation of the EDF in
sinusoidally modulated striationlike fields in inert gases at
low pressures and small currents was analyzed on the basis
of an accurate numerical solution of the Boltzmann kinetic
equation. Dependences of the degrees of modulation of the
macroscopic quantities �electron density, electron mean en-
ergy, and excitation rate� on the spatial period length L of the
sinusoidaly modulated electric field are shown to have an

FIG. 9. Histogram of trajectories for map �18� at different �.
Spots show positions where more than 25% of sequential values 
n

are concentrated. The sum over spots lying along vertical lines
gives 100% of points.
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explicitly resonance character. The resonances become
sharper with decreasing pressure. In addition to resonances at
L=LS �S resonance�, LS /2 �P resonance�, and LS /3 �Q reso-
nance� predicted by linear theory, the calculations indicate
the presence of a resonance at L= �2/3�LS which is better
expressed at lower pressures. Such resonances are well-
known in nonlinear dynamics. It is possible to correlate this
resonance to the R striation observed in experiment, similarly
to S and P striations which correspond to the resonances at
L=LS and L=LS /2.

If the field spatial period length L has the resonance value,
a regular structure is formed in the EDF with maxima mov-
ing in the plane �energy, coordinate� along the resonance
trajectories. A small detuning from the resonance length re-
sults in destruction of this structure. In the S striation case
�L=LS� the EDF is compressed to one maximum which
moves along the resonance trajectory. In the case of a P
striation �L=LS /2� there are two maxima in the EDF and two
resonance trajectories. In the case of L= �2/3�LS the EDF
structure is more complicated than in S and P striations.
There are three maxima in the EDF and three resonance tra-
jectories. In addition, one spatial period length L contains not

one �as at L=LS, LS /2, LS /3� but two EDF maxima of dif-
ferent amplitude.

In the present paper, the influence of inelastic collisions
on the EDF formation was also considered. The resonances
are shown to become sharper at low pressures with formally
increased magnitudes of the inelastic electron-atom collision
cross sections. It is connected with the significant influence
of the presence of several excited atomic states on the elec-
tron bunching effect.
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FIG. 10. Dependences of the modulation degrees of the electron
density mn �a�, electron mean energy m�U� �b�, and excitation rate
mW �c� on the reduced spatial period length L /LS at p=0.5 Torr,
calculated for the 10 times increased inelastic collisions cross sec-
tions Qk

in �closed circles� and for the real values of Qk
in �open

circles�.

FIG. 11. The EDFs calculated for the 10 times increased inelas-
tic collisions cross sections Qk

in �a�, for the real values of Qk
in �b�,

and for the 10 times decreased Qk
in �c�. p=0.5 Torr, L= �2/3�LS, R

resonance.
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